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Dear Mr. Gallagher: 
 
This is the final report for LLNL Subcontract B611610 with Rutgers University.  Since January 
2015, we have investigated incomplete networks and methods for enriching them.  Networked 
representations of physical and social phenomena are often incomplete because the phenomena 
are partially observed.  Working with incomplete networks can skew analyses; and hoping to 
acquire the full data is often unrealistic.  However, one may be able to collect data selectively to 
enrich the incomplete network.   
 
We call the aforementioned task of enriching incomplete networks active graph probing; and 
have studied two specific cases:  
 

1. Active node probing: Given an incomplete (i.e., partially-observed) network, which nodes 
should we actively probe in order to achieve the highest accuracy for a given network 
feature? For example, consider a cyber-network administrator who observes only a 
portion of the network at time t and wants to accurately identify the most important (e.g., 
highest PageRank) nodes in the complete network. She has a limited budget for probing 
the network. Of all the nodes she has observed, which should she probe in order to most 
accurately identify the important nodes? We propose a novel and scalable algorithm, 
MaxOutProbe, and evaluate it w.r.t. four network features (largest connected component, 
PageRank, core-periphery, and community detection), five network sampling strategies, 
and seven network datasets from different domains. Across a range of conditions, 
MaxOutProbe demonstrates consistently high performance relative to several baseline 
strategies. 

2. Active edge probing: Suppose that one is given a sample of a larger graph and a budget to 
learn additional neighbors of nodes within the sample, with the goal of obtaining the most 
valuable information about the graph as a whole. Which nodes should be further 
explored? For example, a network administrator may have been given an incomplete map 
of her network, and can choose machines in which to run traceroutes, thus obtaining 
additional edges. Which machines should she select? We introduce  ε-WGX, a multi-
armed bandit-based algorithm for identifying which nodes in a graph sample should be 
probed. Our experiments compare ε-WGX to several baseline-probing algorithms on four 
real network datasets using samples generated by four popular sampling methods. We 
consider two reward functions: (1) bringing in new nodes into the sample and (2) closing 
triangles within the sample, and show that ε-WGX significantly improves over random 
probing. For example, averaged over all sample types, at the task of closing triangles 
within the sample, ε-WGX improves over random probing by 29%.  
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ABSTRACT
Given an incomplete (i.e., partially-observed) network, which
nodes should we actively probe in order to achieve the high-
est accuracy for a given network feature? For example, con-
sider a cyber-network administrator who observes only a
portion of the network at time t and wants to accurately iden-
tify the most important (e.g., highest PageRank) nodes in
the complete network. She has a limited budget for prob-
ing the network. Of all the nodes she has observed, which
should she probe in order to most accurately identify the im-
portant nodes? We propose a novel and scalable algorithm,
MaxOutProbe, and evaluate it w.r.t. four network features
(largest connected component, PageRank, core-periphery, and
community detection), five network sampling strategies, and
seven network datasets from different domains. Across a
range of conditions, MaxOutProbe demonstrates consistently
high performance relative to several baseline strategies.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; H.2.8
[Database Applications]: Data Mining

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Networks, graph mining, active learning

1. INTRODUCTION
Suppose that one has an incomplete portion G

samp

of some larger complete network G

orig

.1 To learn more
about the structure of G

orig

, one can probe nodes from
G

samp

. The active graph probing problem asks the fol-
lowing question: Which nodes from G

samp

should be
probed to reveal the most useful information (w.r.t. some
network feature) about the structure of G

orig

?
Our work is motivated by problems in cybersecurity

and other domains, where one only has a partial ob-
1
Throughout this paper, when we use the term complete,

we are referring to the completeness of the data�i.e., no

information is missing�rather than to a clique structure.

servation of the complete network; but for situational
awareness purposes, needs the most accurate and infor-
mative picture of the complete network. For example,
suppose a network administrator has partially observed
a network through traceroutes. Which parts of the sam-
pled network should be more closely examined to give
the best (i.e., most complete) view of the entire net-
work? With a limited query budget, how should this
further exploration be done? Alternatively, suppose
that one has obtained a sample of the Twitter network
from another researcher. The sample was collected for
some other purpose, and so may not contain the most
useful structural information for one’s purposes. How
should one best supplement this sampled data?
This problem is related to previous works on graph

sampling and crawling. However, unlike much of the
work in graph sampling, we are not attempting to gen-
erate a sample from scratch. Instead, we are studying
how one can enhance or improve an existing sample,
without control over how that sample was generated.
We present MaxOutProbe, a novel algorithm for

the active graph probing problem. MaxOutProbe is
based on the intuition that successful probes of G

samp

give us broader knowledge of G
orig

. That is, they give
us information about previously-unseen nodes. Max-
OutProbe contains two major steps. First, for each
node u in G

samp

, MaxOutProbe estimates u’s true
degree in G

orig

; it also estimates G

orig

’s transitivity.
Second, MaxOutProbe uses these two quantities to
estimate the number of nodes outside G

samp

to which
u is adjacent. Nodes that are predicted to have the
most neighbors outside the current sample are selected
for probing. This probing strategy is appropriate for
many network features detailed in the next paragraph.
We consider four network features: the nodes in the

largest connected component of the network (LCC), the
highest PageRank nodes (PR), community structure
(Comms), and the core and periphery of the network
(Core-Periphery). We consider samples generated by
five popular sampling techniques applied to seven real
network datasets from multiple domains, and demon-
strate that MaxOutProbe selects nodes for probing

1
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Figure 1: Average results for the LCC feature
on Yahoo! IM network for samples collected via
Random Walks. The x-axis is the budget on the
number of nodes probed. The y-axis is what
fraction of the LCC was recovered. MaxOut-
Probe is the best strategy at all budgets.

that are significantly more valuable than those selected
by the baseline methods, with respect to the aforemen-
tioned four network features. For example, Figure 1 de-
picts the performance of MaxOutProbe on the LCC
feature for a Yahoo! IM network, as compared to several
baseline probing strategies.

The contributions of our paper are as follows:
• We introduce active graph probing, the problem of
determining which k nodes in an incomplete (i.e.,
partially observed) network to probe in order to
obtain a network structure that is more accurate
with respect to a specific network feature such as
the size of the LCC.

• We presentMaxOutProbe, a two-step algorithm
for selecting which nodes from an incomplete net-
work one should probe.

• We perform an extensive set of experiments span-
ning seven network datasets, four network features,
and five sampling methods (which generate the
initial incomplete graph), and compare MaxOut-
Probe to a variety of baseline probing strategies.

• We show that with respect to the four considered
graph features, the graphs obtained by probing
nodes according to MaxOutProbe are signifi-
cantly better than those obtained by probing ac-
cording to the baseline strategies.

2. PROBLEM STATEMENT: ACTIVE GRAPH
PROBING

Formally stated, the active graph probing problem
is as follows: Given an incomplete, partially observed
graph G

samp

that is a sample graph of a larger, fully
observed graph G

orig

, predict network features (e.g.,

PageRank) on G

orig

by computing them on G

samp

. To
aid in this task, we are allowed to probe a specified
number b additional nodes in G

samp

and gain more in-
formation about the probed nodes. Let G0

samp

represent
the augmented graph�i.e., G

samp

with the information
obtained from the probes. Our goal is to select b nodes
cleverly to maximize the accuracy of our prediction of
the network features on G

orig

using G

0
samp

.
We define probing a node as learning all of its neigh-

bors (e.g., querying Facebook for a list of all friends of
a user or learning all e-mail contacts of an individual).
We perform these probes in batch,2 and we only probe
nodes that already exist in G

samp

(that is, there is no
‘master list’ of nodes in G

orig

that allows us to probe
nodes that we have not yet seen).
The general problem is too broad for a single paper,

thus we focus on a special case of the problem, as de-
scribed below.

1. We know the process by which G

samp

was sam-
pled from G

orig

(see Section 3.1). When, as part
of the sampling procedure, sampled nodes are fully
explored (i.e., all of their neighbors are learned),
we know which nodes were sampled. This assump-
tion applies to only two out of our five sampling
methods, as the remaining three sampling meth-
ods sample edges rather than nodes.3

2. We know the fraction of nodes and edges from
G

orig

that are present in G

samp

. For example,
G

samp

may contain 10% of the edges from G

orig

and 5% of the nodes from G

orig

.

3. G
orig

exhibits a high clustering coe�cient, as is
typical in real graphs.

Our assumption that we know the process by which
G

samp

was generated is realistic when we have non-
adversarial contact with the generator of the dataset,
who can provide this information. Our assumption that
we know the size of G

samp

relative to G

orig

is equiva-
lent to knowing the number of nodes and edges in G

orig

,
which is also realistic. Our third assumption is reason-
able for a typical real graph (see, e.g., [27]). However,
there are a number of variations on this problem state-
ment: e.g., one might only learn one edge from each
probe. We leave such problems for future work.
Figure 2 illustrates the probing process. Red nodes

have already been fully explored during sampling (for
some sampling methods, as discussed in Section 3, there
are no such nodes). Yellow nodes are present in the
sample, but have not yet been fully explored: these are
the candidates for probing. Green nodes are not yet

2
There is one exception to this, discussed in Section 4.2.3.

In this case, we conduct probes in two sets.

3
If we eliminate this assumption, then performance of all

probing strategies decreases, because we may use much of

our budget probing nodes that are already fully explored.
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Figure 2: Overview of probing. Red nodes are already
fully explored, and we select probes from among the
yellow nodes. The goal is to select a yellow node that
is adjacent to many green nodes.

present in the sample, and we have no knowledge of
them. By probing yellow nodes, we learn about the
existence of the green node. We refer to the red nodes
as ‘fully explored’, and the yellow nodes as ‘unexplored.’

3. PRELIMINARIES
We consider five sampling methods and four network

features.

3.1 Sampling Methods
We consider five sampling methods, each correspond-

ing to real application scenarios. For each method, we
sample 10% of the edges from the original graph.

RandNode: We sample nodes at random. The sam-
ple contains those nodes plus all of their neighbors. We
assume that a list of the selected nodes is available. We
select one node at a time until our sample reaches 10%
of the total number of edges in G

orig

.
RandEdge: Random edges are selected uniformly

at random. Because edges, rather than nodes, are sam-
pled, no list of sampled nodes is available. The Twitter
firehose, for example, provides a 10% sample of tweets
(where each retweet represents an edge).

BFS: A breadth-first search is conducted from a ran-
dom seed node. All nodes except the leaves of the BFS
are fully explored, and we assume that a list of the
sampled nodes is available. BFS is a common way of
crawling the web (see, e.g., [6]).

Random Walk (RW) and Random Walk w/
Jump (RWJ): These sampling methods begin at a
random node and repeatedly transition to a random
neighbor. In the RWJ method, at each step there is
a chance (say 15%) of jumping to a random node. A
single edge at a time is observed. Thus, no list of sam-
pled nodes is available. These are common sampling
methods for large networks [14].

3.2 Network Features
We have selected four network features, each requir-

ing di↵erent levels of knowledge about the network.
Knowledge required may be broad (i.e., information from
many di↵erent regions of the network) or narrow (i.e.,

information only about central portions of the network);
and deep (i.e., thorough exploration of the observed re-
gions) or shallow (i.e., cursory information is su�cient).
LCC: We find the largest connected components (LCCs)

of G
orig

and G

0
samp

, and calculate the Jaccard similar-
ity between the two sets of nodes. This feature needs
only narrow and shallow knowledge of the network (an
un-detailed picture of part of the network).
PageRank: We calculate the Jaccard similarity be-

tween the top-1000 PageRank nodes in G

orig

and the
top-1000 PageRank nodes in G

0
samp

. This feature needs
a narrow, but deep, view of the network (detailed infor-
mation about part of the network).
Core-Periphery: For k 2 2, 4, we identify the k-

cores of G
orig

and G

0
samp

.4 We calculate the Jaccard
similarities between the detected cores and fringes, and
report the average of these two values. The Core-Periphery
feature requires a broad, but shallow, view of the net-
work. To receive a good score, G

0
samp

must contain
nodes from both central and fringe portions of the net-
work. However, this knowledge need not be very deep;
that is, detailed knowledge about clustering and so on
is not necessary.
Comms: We find communities in G

orig

and G

samp

using the Louvain method [5], and calculate the Nor-
malized Mutual Information (NMI) between the de-
tected sets.5 The Comms feature needs a broad and
deep view of the network, because it needs detailed
knowledge about the entire network.

4. PROPOSED METHOD: MAXOUTPROBE
We propose the MaxOutProbe algorithm as a so-

lution to the active graph probing problem. MaxOut-
Probe relies on the intuition that a successful probing
strategy is one that brings many new nodes into the
sample.
In terms of Figure 2, we want MaxOutProbe to

probe yellow nodes that are adjacent to many green
nodes. The goal of MaxOutProbe is to predict which
candidate probes (yellow nodes) are adjacent to many
nodes outside of the sample (green nodes). The major
challenge that MaxOutProbe faces is thus accurately
predicting the number of nodes that a given node is
adjacent to outside of the sample. We begin this section
with an overview of MaxOutProbe, and then give
specific sample-dependent details.

4.1 MaxOutProbe
For each node u in G

samp

that was not already fully
explored during sampling, MaxOutProbe estimates

4
A k-core of graph G is the largest induced subgraph of G

where each node is connected to at least k other nodes, and

the fringe contains all other nodes.

5
NMI is a measure of cluster similarity, and identical clus-

terings have an NMI of 1.
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d

out

u

, the number of u’s neighbors that lie outside of
G

samp

, as follows:

d

out

u

= d

u

� d

in

u

= d

u

� d

known

u

� d

unknown

u

(1)

where:
• d

u

is u’s true degree in G

orig

. This quantity is not
known, and must be estimated.

• d

in

u

is the number of nodes in G

samp

that u is ad-
jacent to in G

orig

. This includes:

– d

known

u

, the number of nodes in G

samp

that
we already know to be adjacent to u. This
quantity can be directly calculated.

– d

unknown

u

, the number of nodes in G

samp

that
u is connected to in G

orig

, but not in G

samp

(i.e., the connections to u that have not been
observed). This quantity must be estimated.

Once d

out

u

has been calculated, MaxOutProbe se-
lects the b nodes with the highest scores (where b is the
probing budget).

To estimate dunknown

u

,MaxOutProbe uses the knowl-
edge that real social networks tend to exhibit high clus-
tering (i.e., nodes tend to connect to friends-of-friends).
More precisely, let w be an unexplored node that is two
hops away from an unexplored node u, such that w and
u are not connected in G

samp

(they may be connected
in G

orig

). w forms an open wedge with u, because w

and u share at least one neighbor. Let W
u

be the num-
ber of such nodes w; these are the nodes in G

samp

to
which u is most likely connected.

Suppose MaxOutProbe estimated the transitivity
C of the network, which defines the fraction of wedges
that are closed triangles (that is, the ratio of 3 times
the number of triangles in the network to the number
of length-2 paths in the network). Given this value,
MaxOutProbe estimates that u is connected to C ⇥
W

u

nodes in G

samp

, in addition to its known neighbors
in G

samp

.6 Putting this all together, MaxOutProbe
obtains the estimate:

d

out

u

= d

u

�d

known

u

�d

unknown

u

= d

u

�d

known

u

�(C⇥W

u

)
(2)

d

known

u

andW

u

can be calculated exactly fromG

samp

.
The challenge thus lies in estimating d

u

and C. The
methods used for estimating these quantities are specific
to the sampling method used to generate G

samp

, and
are discussed in the next section.

Figure 3 illustrates this process, where we are inter-
ested in node u. In G

samp

, node u is adjacent to sev-
eral red nodes, whose links are known. u may also be
adjacent to some yellow nodes, but these links are un-
known because neither u nor these nodes have been fully
6
Although u’s individual clustering coe�cient would be

more valuable here than the global transitivity C, we have

incomplete information about u, and thus use C as an ap-

proximation for the per-node clustering coe�cients.

Figure 3: Intuition behindMaxOutProbe. The goal
is to estimate the number of green out-of-sample nodes
that u is adjacent to.

explored. Finally, u is adjacent to some green nodes,
which are not present in G

samp

. These links are also
unknown. MaxOutProbe estimates dout

u

, the number
of green nodes to which u is adjacent (here, dout

u

is 3).
To estimate this value, it uses d

u

, u’s estimated true
degree in G

orig

(here, the true value of d
u

is 8), and
subtracts d

in

u

, the estimated number of nodes within
G

samp

to which u is adjacent. d

in

u

includes neighbors
that MaxOutProbe is aware of (the three red nodes)
as well as neighbors that it is unaware of (the two yellow
nodes). To estimate the number of yellow nodes that u
is adjacent to, MaxOutProbe uses the graph’s tran-
sitivity. u participates in wedges with the yellow nodes
at the top of Figure 3. Suppose that the transitivity of
G

orig

is 1
3 . MaxOutProbe then estimates that u is

adjacent to 1
3 of these two-hop neighbors. By combin-

ing all of this, MaxOutProbe predicts the number of
neighbors that u has outside of G

samp

, and selects the
b nodes with the highest dout.

4.2 Estimating d

u

and C

MaxOutProbemust accurately estimate each node’s
true degree d

u

as well as the graph’s transitivity C. In
this section, we describe how MaxOutProbe makes
these estimates for the five popular sampling methods
from Section 3.
As before, u is a node from G

samp

that was not
fully explored during the sampling process. Let f

E

and
f

N

, respectively, denote the fraction of edges and nodes
from G

orig

that are present in G

samp

.7

4.2.1 Estimations for Random Node Sample

Estimating degree d

u

: The Random Node sampling
method randomly selects f

N

fraction of nodes fromG

orig

for exploration, and learns all neighbors of the selected
nodes. Thus, if node u has observed degree d

known

u

in
G

samp

, MaxOutProbe estimates its true degree as

7
We will give examples using real networks, described in

Section 5.1. Section 6.2 provides experimental results re-

garding the quality of MaxOutProbe’s estimates for du
and C. We prove that the estimates are unbiased for some

methods.
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1
f

N

⇥d

known

u

. E.g., if u is adjacent to 5 nodes in G

samp

,

and 10% of the nodes from G

orig

were selected dur-
ing sampling, then MaxOutProbe estimates u’s true
degree d

u

as 50. This estimation works well for high
degree nodes, but is less accurate for low degree nodes.
However, as observed in Section 5, note that low degree
nodes are unlikely to be useful probes, so this method
is accurate where it needs to be.

Claim: The estimator for d
u

is unbiased.
Proof: Let d̂

u

represent the estimator for d

u

. We
must show that for each u, E(d̂

u

) = d

u

. Recall that
f

N

fraction of nodes from G were selected uniformly at
random during sampling to produce G

samp

; these nodes
plus their neighbors constitute G

samp

.
Consider a node u that has not been explored dur-

ing the sampling process, but is present in the sample
G

samp

(that is, u is adjacent to a node that was ex-
plored during sampling). Node u has d

u

neighbors in
G, and because f

N

of the nodes from G were sampled
uniformly at random to produce G

samp

, E(dknown

u

) =
f

N

d

u

. Thus, 1
f

N

E(dknown

u

) = d

u

, so E( 1
f

N

d

known

u

) =

d

u

. d̂

u

= 1
f

N

d

known

u

, so E(d̂
u

) = d

u

, so d̂

u

is an unbi-
ased estimator for d

u

.
Estimating transitivity C: To find C,MaxOutProbe

estimates the number of wedges (2-paths) and triangles
in G

orig

.
Suppose that a triangle (x, y, z) exists in G

orig

. What
is the probability that it will be preserved in G

samp

? In
order for us to observe all edges (x, y), (y, z), and (x, z)
in G

samp

, then at least one node from each of the three
member edges must be fully explored during sampling.
Thus, the triangle will be preserved if and only if at
least two of the three nodes are selected. We can write
the probability p

T

that this occurs as:

p

T

= 3f2
N

(1� f

N

) + f

3
N

(3)

In other words, p
T

is the probability that exactly two
of the three nodes are selected, plus the probability that
all three are selected. Thus, by multiplying the observed
number of triangles in G

samp

by 1
p

T

, MaxOutProbe
estimates the number of triangles T in G

orig

.
Now we calculate the probability that a length-2 path

(x, y, z) from G

orig

is preserved in G

samp

(x may or
may not be connected to z). To observe this path in
G

samp

, either x and z must both be probed, or y must
be probed. The probability p

W

of this occurring is as
follows:

p

W

= f

3
N

+ 3(f2
N

(1� f

N

)) + f

N

(1� f

N

)2 (4)

This is the probability that all three nodes are probed
plus the probability that two nodes are probed plus the
probability that just y is probed. MaxOutProbe then
multiplies the observed number of length-2 paths from
G

samp

by 1
p

W

to estimate the number of wedges W in
G

orig

.

G

orig

’s transitivity C is then estimated as 3T
W

.
Claim: The estimator for C is unbiased.
Proof: Let Ĉ represent the estimator for C. We

must show that E(Ĉ) = C. f

N

fraction of nodes from
G were selected uniformly at random during sampling
to produce G

samp

.
Suppose that wedge (x, y, z) from G is present in

G

samp

. Suppose that (x, y, z) is a closed triangle in
G (so edge (x, z) is present in G): what is the proba-
bility that edge (x, z) is present in G

samp

, so (x, y, z)
is a closed triangle in G

samp

? Because we assume that
(x, y, z) is present in G

samp

, some of those three nodes
must have been selected during the sampling process.
There are three possibilities: (1) all three of x, y, z

were selected, (2) exactly two of x, y, z were selected, or
(3) only y was selected (if only x or only z was selected,
then either edge (y, z) or edge (x, z) would be absent
from G

samp

.
Possibility (1) occurs with probability f

3
N

. Possibil-
ity (2) occurs with probability f

2
N

(1 � f

N

). Possibility
(3) occurs with probability f

N

(1 � f

N

)2. In possibili-
ties (1) and (2), edge (x, z) will certainly be present in
G

samp

. In possibility (3), edge (x, z) will not be present
in G

samp

. Thus, given that wedge (x, y, z) is present in
G

samp

, the probability P

closed

that edge (x, z) is also
present in G

samp

is as follows:

P

closed

=
f

3
N

+ ef

2
N

(1� f

N

)

f

3
N

+ 3f2
N

(1� f

N

) + f

N

(1� f

N

)2
(5)

Thus, of the wedges that are closed wedges in G, we
expect that P

closed

fraction of the wedges present in
G

samp

to be closed inG

samp

. In other words, E(P
closed

)C =
C

samp

.

Note that the definition of Ĉ above is simply 1
P

closed

C

samp

,

so E(Ĉ) = C, so E(Ĉ) is an unbiased estimator of
C.
The results above show that the estimates are cor-

rect in expectation, but do not provide concentration
bounds. We can prove such results that bound the er-
rors in expectations by applying Hoe↵ding’s inequal-
ity [12]. While these bounds may be weak for each
individual entry, they can provide the theoretical basis
for showing that we will be able to identify all large
degrees vertices, and the degree of vertex that we pre-
dict to have a large degree, will not be too small. We
are not including this analysis here due to space con-
straints, but the principles of Theorem 6.2 in [26], will
apply to our application.

4.2.2 Estimations for Random Edge Sample

Estimating degree d

u

: In this sampling method, f
E

fraction of edges are sampled uniformly at random. Thus,
to estimate a node’s true degree d

u

, MaxOutProbe
simply multiplies its observed degree dknown

u

by 1
f

E

. As
with the Random Node sampling method, this estima-
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tion is inaccurate for low degree nodes, but these nodes
are unlikely to be chosen as probes, and so inaccuracy
here does not a↵ect the final probe selections.

Claim: The estimator for d
u

is unbiased.
Proof: As before, let d̂

u

represent the estimator for
d

u

, and we must show that for each u, E(d̂
u

) = d

u

.
G

samp

consists of f
E

of the edges from G selected uni-
formly at random.

Consider a node u in G

samp

, with true degree d

u

.
Because f

E

of the edges from G were sampled uniformly
at random, E(dknown

u

) = f

E

d

u

. Thus, E( 1
f

E

d

known

u

) =

d

u

. This first term is simply d̂

u

, so d̂

u

is an unbiased
estimator for d

u

.
Estimating transitivity C: MaxOutProbe first cal-

culates the transitivity C

samp

of G

samp

. Consider a
length-2 path (x, y, z) in G that is present in G

samp

. If
that path is a closed triangle in G (i.e., x is connected
to z), there is a f

E

probability that the path will be a
closed triangle in G

samp

(i.e., with f

E

probability, edge
(x, z) is present in G

samp

). Thus, MaxOutProbe es-
timates C = 1

f

E

C

samp

.
Claim: The estimator for C is unbiased.
Proof: As before, let Ĉ represent the estimator for

C, and we must show that E(Ĉ) = C. G

samp

consists
of f

E

of the edges from G selected uniformly at random.
C, the transitivity of G

orig

, is the fraction of wedges
(length-2 paths of nodes (x, y, z)) that are closed (x
is connected to z). Suppose that edge (x, z) exists in
G; then, independently of wedge (x, y, z) being present
in G

samp

, there is f

E

probability that it is present in
G

samp

. Thus, of the wedges from G that are present in
G

samp

, we expect that f
E

C fraction of these wedges are
closed in G

samp

(C is the probability that it was closed
in G, and f

E

is the probability that it remained closed
in G

samp

). If C
samp

is the transitivity of G
samp

, then
E(C

samp

) = f

E

C, so E( 1
f

E

C

samp

) = C. The first term

is E(Ĉ), so the Ĉ is an unbiased estimator for C.
The bounds discussed above also apply here.

4.2.3 Estimations for Random Walk and Random Walk

w/ Jump Samples

Estimating degree d

u

: We empirically observe that
for the real networks, there exists some scale factor fG

E

such that multiplying u’s sample degree by 1
f

G

E

gives a

good approximation of d
u

. For example, Figure 4 shows
the sample degree of each node in G

samp

vs. its true
degree in G

orig

for a Random Walk sample from the
Yahoo IM network. The sample degree and true degree
are highly correlated, particularly for high degree nodes
(over all nodes, a Pearson’s correlation of 0.8). Here, fG

E

is slightly less than f

E

= 10%.
Thus, ifMaxOutProbe can accurately estimate fG

E

,
then it can get a good estimate of d

u

, particularly for
high degree nodes. To estimate f

G

E

, MaxOutProbe

Figure 4: True vs. observed degrees for Random Walk
sample of Yahoo network. Observe that there is a high
correlation between a node’s degree in G

samp

and its
degree in G

orig

.

uses a small amount of the probing budget b to probe
nodes that have a high degree in G

samp

.8 MaxOut-
Probe then learns the true degrees of these nodes, and
has already observed their degrees in G

samp

. By taking
the ratio of these values, MaxOutProbe can obtain
an estimate of fG

E

.
For the remaining unprobed nodes, MaxOutProbe

estimates d

u

by multiplying the observed sample de-
grees by f

G

E

.
Estimating transitivity C: To estimate the transitiv-

ity C of G

orig

, MaxOutProbe again uses the scale
factor f

G

E

. Suppose that a length-2 path (x, y, z) from
G

orig

has been preserved in G

samp

. Suppose further
that (x, y, z) is a triangle in G

orig

, so x is connected to
z. The probability that edge (x, z) was also preserved
in G

samp

is fG

E

. The chance that MaxOutProbe will
observe (x, y, z) as a triangle rather than an open wedge
is fG

E

, and so the transitivity of G
samp

will be approx-
imately a factor of fG

E

less than that of G
orig

. Thus,
to estimate the transitivity of G

orig

, MaxOutProbe
simply multiplies the transitivity of G

samp

by f

G

E

.

4.2.4 Estimations for BFS Sample

Estimating degree d

u

: In the case of a BFS sample,
all nodes that are potential candidates for probing (i.e.,
those that have not yet been fully explored during sam-
pling) are on the fringe, or outermost layer, of the BFS.
These nodes are adjacent to sampled nodes that are one
level in from the fringe. To estimate the degree of these
nodes, MaxOutProbe employs a similar strategy as
with the random walk samples, and calculates a scale
factor fG

E

. For a node u in the sample, MaxOutProbe
estimates its true degree d

u

by multiplying its observed
sample degree by f

G

E

.
To estimate fG

E

, MaxOutProbe examines the nodes

8MaxOutProbe uses between 1% and 10% of the probing

budget on these initial probes; full details are available in

Section 5.
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Figure 5: True vs. estimated values of d
u

for nodes
from a BFS sample of the Retweets network. Observe
that the slope of the line is close to 1, indicating that
the estimates are accurate on average.

that are one level deeper into the BFS, adjacent to at
least one fringe node. Let L be the set of such nodes.
Suppose that each node v in L is adjacent to d

BFS in

v

nodes deeper within the BFS, and has a true degree
of d

v

. Because MaxOutProbe has full information
about the nodes in L, it can use them to approximate
degrees of the fringe nodes. In particular, MaxOut-
Probe calculates the scale factor fG

E

by taking the av-
erage of the ratios of d

v

to d

BFS in

v

for each v 2 L.
Then, like with RandomWalk sampling, for each can-

didate probe u, MaxOutProbe simply multiplies its
degree in G

samp

by f

G

E

to estimate its true degree d

u

.
Estimating transitivity C: A BFS sample gives us a

complete, but biased, view of part of the network. The
nodes in the sample are concentrated in part of the net-
work and, with the exception of nodes in the fringe of
the BFS, MaxOutProbe is aware of all connections
between the sampled nodes. It calculates the transi-
tivity of the subgraph obtained by removing the fringe
nodes, and uses this as an estimate for the global tran-
sitivity C.

5. EXPERIMENTS
In our experiments, we demonstrate that MaxOut-

Probe outperforms a variety of baseline algorithms with
respect to several di↵erent features, across di↵erent sam-
pling methods.

We are interested in answering the following:

1. Is MaxOutProbe significantly better than the
baseline probing strategies?

2. How much improvement doesMaxOutProbe pro-
vide over baseline probing strategies?

3. How much does the quality of the estimations af-
fect the performance of MaxOutProbe?

5.1 Datasets
We consider seven network datasets, described in Ta-

ble 1. Five are communications networks, and the other

Type Network Nodes Edges Transitivity Comps

Commun- Enron 84K 326K 0.08 950

ications Yahoo 100K 595K 0.08 360

Replies 261K 309K 0.002 11,315

Retweets 40K 46K 0.03 3,896

LBL 3K 9K 0.005 9

Product Amazon 270K 741K 0.21 3840

Similarity Youtube 167K 1M 0.007 1

Table 1: Statistics for the network datasets that we
consider: number of nodes and edges, transitivity, and
number of connected components.

two are similarity networks. In the similarity networks,
each node represents a product (for Amazon, nodes
are books, and for Youtube, nodes are videos), and a
link between two products indicates that users have fre-
quently purchased/watched both products.

5.2 Baseline Approaches
We consider a variety of baseline heuristics, described

in Table 2, for selecting which nodes to probe, each with
a simple scoring function for selecting nodes.
These strategies each rank all of the nodes in the

sample graph G

samp

(except those that have already
been fully explored, if known). These strategies are
‘Exploit’ strategies, which strategically select nodes, or
an ‘Explore’ strategy, which randomly selects nodes.
The degree-based methods rely on the intuition that

high-degree nodes inG

samp

are connected to many nodes
outside of G

samp

. The structural hole methods target
nodes that “fill” structural holes, thus connecting dif-
ferent parts of the graph [7]. On a similar intuition, the
CrossComm strategy selects nodes on the border of two
communities in the hopes.
The Random probing strategy selects random nodes

from within G

samp

for probing.

5.3 Experimental Setup
Recall that our primary goal is to demonstrate that

MaxOutProbe outperforms the baseline probing strate-
gies over a variety of features and sampling methods.
For each network from Section 5.1, we generate 20

samples for each of the five sampling methods described
in Section 3.1. Each sample contains 10% of the edges
from the original network. For each probing strategy,
we conduct probes at budgets b 2 {1%, 2%, 3%, 4%, 5%, 10%}
of the number of nodes in G

orig

.
After conducting probes on a sample graph G

samp

,
we obtain an augmented sample graph G

0
samp

. We eval-
uate the quality of G0

samp

with respect to the features
described in Section 3.2, using the feature-specific eval-
uation functions also discussed in Section 3.2.

5.4 Evaluation
Our evaluation is intended to compare the perfor-

mance of MaxOutProbe to the baseline strategies,
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Category Sub-Category Strategy Names Description

Exploit Degree HighDeg, LowDeg Select the highest or lowest degree nodes.

Structural Hole HighDisp, LowDisp Select the highest or lowest dispersion nodes.

CrossComm Pick nodes with the highest fraction of neighbors outside of their community

(as identified with the Louvain method [5]).

Clustering HighCC, LowCC Select the highest or lowest clustering coe�cient nodes.

Explore Random Randomly select nodes from the sample.

Table 2: Baseline probing strategies. We categorize strategies as explore or exploit, and further subdivide as
degree-based, structural hole-based, or random. Dispersion is an edge-based measure of how well a node’s neighbors
are connected to each other [3]. For each node, we average the dispersion of each of its adjacent edges.

analyze the quality of MaxOutProbe’s estimates of
d

u

and C, and determine how much the error in the
estimates a↵ects the final outcome of MaxOutProbe.

To compare strategies, for a combination of network,
sampling method, and feature, we do the following:

For each sampling method, we generate 20 samples:
G

samp,1, ..., Gsamp,20. For each sample, we identify probes
using MaxOutProbe and the baseline strategies at all
6 probing budgets. For each probing strategy and each
sample graph, we obtain an augmented sample graph,
which we score using the feature-specific scoring func-
tions described in Section 3. Let S

i

b,strat

represent the
score obtained by using probing strategy strat on sam-
ple graph G

samp,i

at probing budget b.
Then for each pair of strategies strat1 and strat2, us-

ing all budgets b, we conduct a paired t-test to compare
the values of Si

b,strat1 and S

i

b,strat2 to ascertain whether
strat1 is significantly better than strat2 at the p = 0.01
level. Additionally, for each budget b, we compare the
means of the Si

b,strat

scores (across all samples G
samp,i

)
to evaluate their di↵erences in success.

6. RESULTS AND ANALYSIS
We first demonstrate that MaxOutProbe is signif-

icantly better than the baseline probing strategies at
the various feature estimation tasks that we consider.
We then evaluate the quality of estimates forMaxOut-
Probe, and analyze e↵ects of estimation errors.

6.1 Comparison of MaxOutProbe to Baselines
Across a variety of networks and sampling methods,

MaxOutProbe is typically significantly better than
the baseline strategies at the feature tasks that we study.
We conduct the paired t-test as described above, and
present results in Table 3 at p = 0.01. In general, Max-
OutProbe significantly outperforms the best baseline
strategy. The results for the Random Node, Random
Edge, Random Walk, and Random Walk w/Jump sam-
pling methods are especially good. For these sampling
methods, MaxOutProbe is particularly successful for
the LCC, PageRank, and Core-Peri-2 features.

By how much does MaxOutProbe outperform the

Figure 6: Average results for PageRank feature on
Retweet network for Random Edge samples. MaxOut-
Probe is the best strategy for larger budgets.

baselines? This amount varies by budget, and is also
dependent on the initial sample: if G

samp

itself receives
a high score with respect to the feature, then it will be
di�cult for any strategy to greatly improve the score.
Due to these issues, we cannot aggregate results over

networks and budgets. Thus, we present one plot for
each feature, showing results for one network and sam-
pling method, averaged across the 20 samples. Figures 1
and 6 - 8 correspond to the LCC, PageRank, Commu-
nity Detection, and Core-Periphery features. Rather
than showing results for each baseline strategy, we se-
lected the best-performing baseline from Table 2.
Plots are representative of other results for the fea-

ture, subject to Table 3. For example, Figure 1 shows
that MaxOutProbe outperforms the baselines, and
Table 3 tells us that this is generally the case.
We now quantifyMaxOutProbe’s improvement over

the High Degree strategy, which is typically the best
baseline strategy, at a fixed budget. We set a bud-
get, and for each sample graph G

samp

, calculate s

h

,
the amount by which High Degree probing improved
G

samp

with respect to the feature, and s

m

, the amount
by which MaxOutProbe improved G

samp

. We take
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Features
Samp. Method LCC PageRank Comms 2-C.-P. 4-C.-P.
RandNode 6/7 7/7 (tied on 1/7) 5/7 (tied on 2/7) 5/7 (tied on 1/7) 3/7 (tied on 1/7)
RandEdge 7/7 7/7 4/7 (tied on 2/7) 6/7 4/7
Random Walk 6/7 (tied on 1/7) 7/7 (tied on 2/7) 5/7 (tied on 2/7) 6/7 (tied on 1/7) 4/7 (tied on 1/7)
Random Walk w/Jump 7/7 7/7 5/7 (tied on 2/7) 7/7 3/7
BFS 5/7 (tied on 2/7) 5/7 (tied on 3/7) 3/7 (tied on 2/7) 3/7 (tied on 1/7) 3/7 (tied on 1/7)

Table 3: Number of networks, out of the 7 datasets that we considered, on which MaxOutProbe outperformed
all baselines. 2-C-P and 4-C-P represent the 2-Core-Periphery and 4-Core-Periphery features. Comparison was
done using a paired t-test at p = 0.01. In some cases, MaxOutProbe tied for highest with some other strategy.
MaxOutProbe is consistently the best for the LCC, PageRank, and 2-Core-Periphery features.

Figure 7: Average results for Comms feature on Yahoo
network for Random Node samples. MaxOutProbe
is the best strategy.

the ratio of s
m

to s

h

to see how much better MaxOut-
Probe is than High Degree probing. For example, sup-
pose G

samp

before probing receives a score of 0.5; and
the sample after probing according to the High Degree
strategy receives a score of 0.6; and the sample after
probing according to MaxOutProbe receives a score
of 0.65. MaxOutProbe is then a 50% improvement
over High Degree probing (0.15 vs 0.10).

Table 4 contains the median improvement over all
networks at a budget of 0.04. Individual results are
often much higher (e.g., for PageRank on the LBL net-
work with a Random Edge sample, MaxOutProbe
improves on High Degree probing by 98%). These me-
dian di↵erences are sometimes small, but they are sta-
tistically significant, and the improvement may be of
critical importance in domains such as cybersecurity.

6.2 Quality of Estimates
MaxOutProbe estimates a node’s degree d

u

as well
as the graph’s transitivity C. We now examine the qual-
ity of the estimates, as described in Section 4.

6.2.1 Estimating d

u

Figure 8: Average results for Core-Periphery feature
on Youtube network for Random Walk w/ Jump sam-
ples. Solid lines correspond to the 2-CorePeriphery
results, dashed lines to the 4-CorePeriphery results.
MaxOutProbe is the best strategy at all budgets, but
is similar to the High Degree strategy.

We first calculate the quality of the degree estimates.
Consider Figure 5, depicting unexplored nodes from a
BFS sample from the Twitter Retweets network. The
plot shows their true degree and the degree that Max-
OutProbe estimated as described in Section 4.2.4. We
fit a best fit line while forcing a y-intercept of 0. The
quality of the estimate is high: 1.04 on average.
We calculate this value for each network and sampling

method. Table 5 lists the slopes of the best fit lines:
values close to 1 indicate a high quality estimate.
For the Random Node and Random Edge samples, for

the Replies, Retweets, and Amazon networks, the ra-
tios are at most 0.6, indicating that MaxOutProbe’s
estimates are poor. This occurs when the network has
many very low degree nodes; as we noted in Sections 4.2.1
and 4.2.2, we expected MaxOutProbe to do poorly at
estimating true degree for nodes with low degrees in the
sample. Indeed, if we recalculate the values in Table 5
but only consider high degree nodes with true degree
greater than 50, we see values very close to 1.
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Features
Samp. Method LCC PR Comms 2-C.-P. 4-C.-P.
RandNode 7% 5% 0% 4% 1%
RandEdge 2% 7% 1% 1% 1%
Rand Walk 3% 7% 1% 5% 1%
RW w/Jump 3% 5% 0% 2% 0%
BFS 10% 8% 0% 4% 0%

Table 4: Median improvement of MaxOutProbe
over High Degree probing at b = 0.04 budget. Improve-
ment is greatest for LCC, PageRank, and 2-Core-Peri.

Degree Estimates
Network RandNode RandEdge RW RWJ BFS
Enron 0.9 1.0 0.9 1.0 0.8
Yahoo 0.7 0.8 0.9 0.7 1.4
Replies 0.4 0.6 1.1 0.9 1.0
Retweets 0.4 0.6 1.2 1.0 1.0
LBL 0.8 0.9 1.1 1.0 0.0
Amazon 0.4 0.6 0.9 0.7 1.1
Youtube 1.0 1.0 1.7 1.6 0.0

Table 5: Slope of best fit line comparing estimated de-
grees to true degrees. Observe that ratios are generally
close to 1, indicating high quality estimates. In some
cases, ratios are low: this occurs when the network con-
tains many low degree nodes, which are di�cult to get
a good estimate for. See text for further explanation.

For example, for the Random Node samples, the Replies,
Retweets, and Amazon networks have scores in Table 5
of 0.4, but for nodes with true degree greater than 50,
we see ratios of 0.9, 1.0, and 0.8. Similarly, for the Ran-
dom Edge samples, when we consider only high degree
nodes, we see ratios of 0.9, 1.0, and 0.9, respectively.

As discussed earlier, the nodes that we wish to probe
are generally those with high degrees in G

orig

; thus,
the poor estimates for low degree nodes do not a↵ect
the overall performance of MaxOutProbe.

For BFS samples, we see poor results on the LBL
and Youtube networks. This is due to the hub-and-
spoke structures of these networks: nearly every node
has degree 1 in G

samp

. Some of these nodes have high
degree in G

orig

but MaxOutProbe cannot determine
that from the degree in G

samp

.

6.2.2 Estimating C

We now perform a similar comparison for transitivity,
and measure the ratio of estimated transitivity to true
transitivity. Transitivity is di�cult to estimate, as it
can vary considerably by node [27]. Additionally, ran-
dom walk samples tend to concentrate in more heavily
clustered regions of the graph [22].

For Random Node sampling, most ratios are close to
1 (e.g., on the Enron network, the ratio of estimated
to true transitivity is 0.8, and on Yahoo, it is 1.0). On
some networks where clustering coe�cient varies signif-

icantly by node, estimates are poorer (e.g., on Twitter
Replies, MaxOutProbe overestimates by a factor of
5). We see similar results for Random Edge sampling:
most ratios are close to 1, but MaxOutProbe some-
times overestimates substantially.
For RandomWalk sampling methods,MaxOutProbe

overestimates the true transitivity. This occurs because,
as observed before, these samples possess higher tran-
sitivity than the complete graph. For the random walk
sampling methods, MaxOutProbe typically overesti-
mates transitivity by a factor of 1.5 to 3.
For the BFS samples, MaxOutProbe typically es-

timates transitivity within an order of magnitude. For
the LBL and Youtube networks, which have a strong
hub-and-spoke structure, the BFS sample contains mostly
fringe nodes; when MaxOutProbe estimates transi-
tivity by looking only at the fully explored nodes, it
has very little information. On the LBL network, the
BFS sample has a transitivity of 0! These two net-
works both have very low transitivity to begin with, so
MaxOutProbe’s low estimation is close to the truth.
For other networks, MaxOutProbe obtain reasonable
results (e.g., on Twitter Replies, MaxOutProbe’s es-
timate has an excellent ratio of 0.99 to the true transi-
tivity).

6.2.3 Effect of Estimates on MaxOutProbe

How does estimation error a↵ect the performance of
MaxOutProbe? To answer this, we create three ‘cheat’
strategies that use the true values of these quantities.
In the first strategy, the true d

u

values are known, in the
second, C is known, and in the third, both are known.
Table 6 presents results for the PageRank feature on

the Enron network. We present median scores for each
strategy, at budget b = 0.03, over 20 graph samples.
These results are representative of other networks.
We note several important observations:

1. Accurate estimation of the true degree is criti-
cal: Note the relatively poor performance of the
Cheat2 strategy, in which degrees are estimated.

2. Knowing the true transitivity is not helpful: The
Cheat1 and Cheat3 perform similarly. This is likely
because transitivity varies substantially by node.
Because the initial G

samp

graphs are a small por-
tion of G

orig

, local transitivity can be of more
value than the global transitivity.

3. Even though MaxOutProbe does not know the
true degrees, adding estimated transitivity dra-
matically improves the results. Adding the true,
global transitivity (Cheat2 strategy) does not help.

4. BFS samples are an exception to the above ob-
servations. This is due to the structure of BFS
samples: nodes on the fringe of the BFS are the
least-well connected to the sample as a whole (if
they were better-connected, they would have been
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observed deeper inside the BFS). Because they are
poorly connected to the sample in general, cluster-
ing plays a smaller role in predicting connections.

6.3 Discussion
Our experimental results lead to several conclusions:

1. MaxOutProbe is significantly better than High
Degree probing, the best baseline probing strategy.
It is especially successful for the LCC, PageRank,
and 2-Core-Periphery features, with a 3% - 10%
improvement over High Degree probing.

2. MaxOutProbe shows the most consistent im-
provements when the sample is generated using
the Random Node, Random Edge, or RandomWalk
sampling methods. Results on BFS are strong, but
less consistent, as shown in Table 3.

3. MaxOutProbe does not perform as well for the
Comms and 4-Core-Peri features. For these fea-
tures, getting more data about nodes withinG

samp

is useful, rather than adding new nodes.

4. The quality of the degree estimate d

u

is critical,
and correctly estimating C is of less importance.

7. RELATED WORK
Our work is most related to graph sampling and crawl-

ing, as well as active learning, and researchers have
studied related problems from other domains.
Crawling and Sampling Graphs Previous litera-
ture has examined the study of community detection
from graph samples�e.g., by using minimum spanning
trees (MSTs) [28], or by expanding a graph sample [16].
Avrachenkov et al. [2] show how to use queries to locate
high-degree nodes, and O’Brien and Sullivan show how
to use local information to estimate the core number
of a node [19]. Hanneke and Xing, as well as Kim and
Leskovec, infer characteristics of a larger graph given a
sample akin to our Random Node sample [11, 13].

Our work is also related to the crawling literature.
Maiya and Berger-Wolf [17] study the problem of on-
line sampling for centrality measures including PageR-
ank [18]. Cho, et al. study the problem of determining
which URLs to examine first in a web-crawl so that a
larger portion of the network is visited [9]. In contrast,
we study the problem of selecting which nodes from
an existing sample one should probe, rather than con-
structing a sample from scratch. Also, unlike most sam-
pling methods in the literature, we are not attempting
to down-sample a network to which we have complete
access, but use a limited number of probes. Addition-
ally, we select probes in a batch, rather than incremen-
tal, manner. This di↵erence is critical in environments
where getting data is time-consuming.
Active Learning. Our problem is related to active
learning. E.g., Sheng et al. [25] consider the problem

of when to get another label for elements in a class.
Bilgic et al. [4] and Pfei↵er et al. [20,21] studied active
learning on networks for classifying nodes.
Related Work from Other Domains. Although we
are the first to conduct a broad study in the problem
of probing incomplete graphs, researchers from other
domains, or those interested in specific network fea-
tures, have studied related problems. Most similar to
our work is that by Macskassy and Provost, who ad-
dress the problem of identifying malicious entities in in-
complete network data by gathering more information
about those estimated to be the most suspicious [15].
Cohen, et al. propose a strategy for immunizing

a population of individuals in an unobserved network
by targeting neighbors of randomly selected nodes [10].
Shakkottai considers the problem of nodes in a sensor
network attempting to find the source of information,
given only local knowledge [24], and Ragoler et al. study
the problem of determining the frequency at which sen-
sor nodes should query their environment [23].
In addition to these problems, theoreticians have stud-

ied the structure of subgraphs through concepts such as
monotone graph properties (see, e.g., Alon and Shapiro [1]).
Charikar, et al. study the problem of estimating the
value of a function over a set of inputs [8].

8. CONCLUSIONS
We introduced the problem of determining which nodes

in an incomplete network to probe in order to learn the
most information about the original network. We pre-
sented MaxOutProbe, a strategy for this problem.
We considered the Largest Connected Component,

PageRank, Comms, and k-Core-Periphery features. We
showed thatMaxOutProbe outperforms baseline strate-
gies at the task of identifying probes that are valuable
for these features. We also analyzed the quality of the
estimates produced by MaxOutProbe, and showed
that estimating degree well is especially important.
Future work. We are working on several problems:

How can we develop strategies for other probing scenar-
ios (e,g., if we only obtain one edge per probe)? When
do the gains from additional probes begin to diminish?
What is the tradeo↵ between sample size and budget?
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Abstract—Relational data is often represented as a graph. In
practice, the relationship data used to construct the graph is often
incomplete; that is, the observed relationships are only a subset of
the full set of relationships, and working with incomplete data can
potentially skew analyses. Hoping to acquire the full data is also
unrealistic, but we may be able to collect data more selectively.

We introduce the Active Edge Probing problem, which asks the
following: Suppose that one is given a sample of a larger graph
and a budget to learn additional neighbors of nodes within the
sample, with the goal of obtaining the most valuable information
about the graph as a whole. Which nodes should be further
explored? For example, a network administrator may have
been given an incomplete map of her network, and can choose
machines in which to run traceroutes, thus obtaining additional
edges. Which machines should she select? We introduce ✏-WGX, a
multi-armed bandit-based algorithm for identifying which nodes
in a graph sample should be probed. Our experiments compare ✏-
WGX to several baseline probing algorithms on four real network
datasets using samples generated by four popular sampling
methods. We consider two reward functions: (1) bringing in
new nodes into the sample and (2) closing triangles within
the sample, and show that ✏-WGX significantly improves over
random probing. For example, averaged over all sample types, at
the task of closing triangles within the sample, ✏-WGX improves
over random probing by 29%.

I. INTRODUCTION

Most network analysis is conducted on existing incomplete
samples of much larger complete graphs1 (e.g., graphs col-
lected over a short time period or produced by a crawling
algorithm). For example, many researchers may obtain graphs
from online dataset repositories. However, these graphs are
often poor representations of the complete network. More
complete data would lead to more accurate analyses, but data
acquisition is costly. Given a query budget for identifying
additional edges, how can one improve the graph sample so
that it is a more accurate representation of the complete, fully
observed network? This is a novel problem that is related to,
but distinct from, topics such as graph sampling and crawling.
Given the prevailing use of graph samples in the research
literature, we believe that this problem is of considerable
importance, even though it has been ignored.

We introduce and propose a solution to the Active Edge
Probing problem, which we define as follows: Suppose that
one obtains a sample G

samp

of a larger graph G, without
knowledge of or control over how that sample was generated.

1Throughout this paper, a ‘complete’ graph is a graph for which all data is
available, as opposed to a clique structure in which all nodes are connected.

Fig. 1. Performance of the ✏-WGX algorithm vs. baseline probing strategies
on the FB-SocCir network using a sample produced by a BFS crawl, with the
goal of maximizing the number of nodes in the sample, across a large range
of probing budgets. ✏-WGX outperforms the baselines by a very large margin.

Additionally, one has an edge budget b that can be used
to probe nodes in G

samp

, where each probe corresponds to
learning one neighbor of the selected node (for example, given
a sample of the Facebook network, one might decide to expand
a portion of that network around some node, and thus inquire
for information about that node). Which nodes should be
probed to most effectively make use of the limited budget?

Depending on the analysis being conducted, the specific
goal of this data acquisition will change. We consider two
such goals: maximizing the number of nodes in the sample
(i.e., adding edges leading out of sample), and closing triangles
within the sample (i.e., adding edges within the sample).

Real applications of the Active Edge Probing problem
abound. Consider a micro-loan company, which gets access to
an applicant’s Facebook account, and uses this social network
to make credit decisions about the applicant. The company
knows who the applicant’s friends are but doesn’t know if they
are friends with each other, information that can be helpful
for determining credit-worthiness. In this case, the company
wishes to close triangles within the sample. Another example
is of a researcher that has a sample of a Twitter retweet graph
and wishes to bring new nodes and edges into his/her graph
sample for more accurate community discovery.

To solve the Active Edge Probing problem, we present ✏-
WGX (Weighted Graph eXplore), a multi-armed bandit-based

Please do not distribute.



strategy for identifying nodes for probing.

The key strength of ✏-WGX is that it does not require
any background information about the structure of the sample,
knowledge of how the sample was created, details about the
underlying network G, or intuition about which nodes should
be good probing selections for the specific reward function.
Although for specific datasets and reward functions, some
baseline strategy might be more successful, ✏-WGX is an
excellent choice when one doesn’t know which strategy to
use.

We compare ✏-WGX to several baseline probing strategies.
We conduct experiments on four real networks, using samples
generated by four popular sampling methods. Across sampling
methods, networks, and reward functions, ✏-WGX is always
the best or second best probing strategy (e.g., for the task
of maximizing the number of nodes brought into the sample,
on samples generated by a BFS crawl, ✏-WGX outperforms
random probing by 20%); moreover, unlike these baseline
strategies, an individual using ✏-WGX requires no background
knowledge about the behavior of the reward function or the
structure of the network. For example, Figure 1 depicts the
performance of ✏-WGX vs. the three baseline strategies on a
sample of a Facebook network (described in Section V-C) that
was generated by a breadth-first-search crawl. In this figure,
the goal of each strategy was to maximize the number of new
nodes brought into the sample through probing. We considered
a range of budgets varying from 0 probes to the case when
every single node in the sample has been probed as many
times as possible (at these extremes, all strategies naturally
perform the same). We see that ✏-WGX very quickly reaches
the maximum performance, using a much smaller budget than
the baseline strategies.

We argue and show that use of a simple baseline algorithm
(such as probing the nodes with the highest degree in G

samp

)
is not appropriate for this problem: although the baseline may
be successful for one particular sample or reward function, it
will not be generally successful. For example, Figure 1 shows
that the Low Degree probing strategy is more successful than
the High Degree probing strategy at low probing budgets, but
their positions reverse at higher probing budgets. In contrast, ✏-
WGX can adapt to the specific graph sample, reward function,
and probing budget under consideration.

The contributions of our paper are as follows:

• We introduce the Active Edge Probing problem, which
is of vital importance to a variety of applications in
network analysis.

• We propose ✏-WGX, a multi-armed bandit-based algo-
rithm for strategically selecting nodes from a sample
graph G

samp

for probing.

• We present empirical evidence demonstrating that use
of a baseline probing strategy is inappropriate for the
Active Edge Probing problem, and show that for all
considered sampling methods, networks, and reward
functions, ✏-WGX is always the best or second best
strategy. This performance is statistically significant,
measured at p = 0.01.

This paper is organized as follows: In Section II, we
formally define the Active Edge Probing problem. We present

preliminaries that are required for ✏-WGX in Section III.
Section IV presents the ✏-WGX algorithm, and Section V
describes our experimental set-up, including discussion of
the reward functions. We present results in Section VI and
discussion in Section VII. We then give an overview of related
work in Section VIII, and conclude in Section IX.

II. PROBLEM STATEMENT

In the Active Edge Probing problem, one is given a graph
G

samp

that is a sample of a larger, unobserved graph G,
and is interested in the results of some application (such as
community detection) on G. To assist in obtaining accurate
results, one can use a budget b to obtain additional information
to supplement G

samp

. This information is obtained as follows.
For each unit of budget, one selects a node for probing, notifies
the underlying network system or administrator of this choice,
and is then given an edge adjacent to that node in the true graph
G. This query might represent, for example, asking Twitter to
return one follower of a given user, or using a traceroute to
identify one of a node’s neighbors.

In this paper, we investigate goal-specific data collection,
and thus use a reward function, which assigns each returned
edge a score corresponding to its value for the application of
interest. We consider two reward functions, which correspond
to the number of new nodes brought into the sample and the
number of triangles formed in the sample, but any reward
function is acceptable.

We investigage two types of queries. In the first, the user
may specify the edges that she already knows about, and thus
request a new edge that she is unaware of; i.e., if she queries
a node multiple times, she is guaranteed to get a new neighbor
each time. For example, if directly asking the administrators
of an online social network such as Facebook or Twitter, one
might send five queries and expect five unique neighbors. In
the second, the user cannot specify edges that she already
knows, and so may receive duplicate edges from multiple
probes. This query type is relevant to domains in which one
obtains neighbors of a node by observing the behavior of
the underlying network, as opposed to performing a database
query. For example, if one learns neighbors of a node through
a traceroute, then there is no guarantee that a new neighbor
will be observed with each query.

In both versions, we assume that after selecting a node
for querying, a user is given a neighbor of that node selected
uniformly at random (e.g., if we ask Twitter to tell us a
neighbor of a node, all neighbors of that node are equally
likely to be returned). In the first version, we assume that this
selection is done without replacement; i.e., if we query a node
multiple times, we are guaranteed to get a new neighbor each
time (when no new neighbors remain, nothing is returned). In
the second version, we assume that this selection is done with
replacement; i.e., if we query a node multiple times, we may
receive duplicate neighbors.

We refer to the first problem as the AEP-NoReplacement
(AEP-NR) problem, and the second problem as the AEP-
Replacement (AEP-R) problem.

After performing b probes on G
samp

, one obtains an
enhanced sample G0

samp

, which contains the information from



G
samp

as well as the information obtained from the probes.
The goal of the Active Edge Probing problem is to maximize
the overall score of the reward function on the graph G0

samp

.

We assume that G is an unweighted, undirected graph
(though our methods can easily be modified for directed or
weighted graphs). We do not assume that the user knows the
process by which G

samp

was generated, or any information
about G beyond the link structure in G

samp

.

Challenges: A successful probing strategy must determine
which nodes are likely to lead to high scores with respect
to the reward function (e.g., which nodes should be probed
to learn about the greatest number of nodes outside of the
current sample). Additionally, for the AEP-R problem, in
which queries may result in duplicate neighbors, the strategy
must determine when to stop probing a node.

There are several difficulties in determining which probes
are likely to provide important structural information. First and
foremost, for a given task or application (such as maximizing
the number of nodes in the enhanced sample G0

samp

), it is
not immediately clear how one can select nodes based only
on their structural profile in G

samp

. As we will see, even if
one has observed that certain types of nodes (e.g., nodes with
high degree in G

samp

) are good candidates for probing, the
success of such a strategy can vary across networks, sampling
methods, and even probing budgets. Second, even if one could
design a probing strategy that works well for one application,
there is no reason to believe that this strategy would work for
any other application.

The key challenge, then, is designing an algorithm that
works across networks, sampling methods, applications, and
probing budgets. We do not necessarily expect this algorithm
to be the best performing strategy in every case (because as
we have noted, it is unlikely that any single strategy is the best
in all cases). However, we do expect that it should be a safe
strategy: that is, it should consistently perform significantly
better than random probing, and should frequently be close to
the best strategy for the particular setting.

III. PRELIMINARIES

A. Multi-Armed Bandits

The multi-armed bandit problem is motivated by a gambler
attempting to choose which slot machine (aka ‘bandit’) to play
from among a set of slot machines. Each machine will give
the gambler a reward drawn from some distribution specific to
that machine, and the goal of the gambler is to maximize this
reward. This problem appears in a variety of settings, such as
advertising, in which a company wishes to determine which
advertisements are most effective.

A hallmark of solutions to the multi-armed bandit problem
is the presence of exploration, or the selection of random
machines, and exploitation, or playing machines that have been
known to perform well in the past. The simplest solution to
the multi-armed bandit problem is the ✏-greedy algorithm [1].
In this method, one explores with probability ✏ (i.e., selects a
machine uniformly at random), and exploits with probability
1�✏ (i.e., selects the machine with the highest average reward
so far).

Since the development of the ✏-greedy algorithm, a variety
of algorithms have been proposed, including methods that use
weighted exploration or contextual information [2]. In our
work, we consider a variation of the ✏-greedy method, and
show that it works well for the AEP problem.

B. Predicting Population Size with Random Draws

A second major challenge in the AEP-R problem is deter-
mining when to stop probing a node. Suppose that we have
probed a node k times, and seen w distinct neighbors and r
duplicates (k = w+ r). What is the estimated degree d of that
node?

The problem of estimating a population size given multiple
draws, and some number of distinct and duplicate observation,
arises in combinators [3]. As shown in [3], the maximum
likelihood estimate of d, given k, w, and r, is approximately:

d̂ =
w + r

m(s)
, (1)

where m(s) is the solution to s = (1 � e�m)/m. This
method assumes that each edge is equally likely to be selected,
but for the general case, we can use the Valiants’ results [4].

C. Sampling Methods

The purpose of the AEP problem is to improve a graph
sample in such a way as to produce the most valuable structural
information. How are such samples made? In practice, samples
are often generated in one of the following four ways:

• Breadth-first search (BFS): The BFS sampling
method begins with one node (often randomly se-
lected), and iteratively adds all neighbors of nodes
already in the sample. In our experiments, we fully
explore (i.e., add all neighbors of) observed nodes,
with the exception of nodes observed in the final
iteration, on the fringe of the set. BFS crawls are a
common way of exploring portions of the Web (e.g.,
in [5]).

• Random Edge (RandEdge): The Random Edge
sampling method selects a given fraction of edges
uniformly at random from the entire network. For
example, the Twitter firehose provides a 10% uniform
sample over the set of tweets. If one is constructing
a graph in which retweets constitute edges, then this
data produces a sample similar to the Random Edge
method.

• Random Walk (RW): The Random Walk sampling
method selects a random node as a starting point,
then iteratively transitions to a random neighbor of
the node that it is currently on. A single edge at a
time is observed. This is also a common method for
sampling large graphs [6].

• Random Walk with Jump (RWJ): The Random
Walk with Jump method is similar to the Random
Walk sampling method, except that at each step, there
is a 15% chance of transitioning to a random node in
the graph.



In our experiments, we evaluate our algorithm on samples
generated by these four methods.

IV. PROPOSED METHOD

We view the AEP problem as a version of the general
multi-armed bandit problem: one may probe any of the nodes
in the sample graph, and depending on the selection, obtains
information of varying value for the feature of interest. For
example, suppose that we wish to maximize the number of
nodes in the enhanced sample G0

samp

. In this case, it would
be most valuable to probe nodes in G

samp

that have a high
fraction of neighbors outside of G0

samp

. But how can one
predict which nodes are likely to have a high fraction of
neighbors outside of G

samp

? We will see that it is not as simple
as selecting nodes with high (or low) degree inside G

samp

.
Because successful probes may exhibit significant structural
variance depending on application, network, and so on, multi-
armed bandits are the ideal tool.

Our algorithm has the following strengths: (1) It can be
used without background knowledge of the network structure
or reward function. In other words, one need not know what
type of node (e.g., high degree) is useful for the reward
function. (2) It can adapt to the network and reward function:
if probing some node is unsuccessful, it is unlikely to probe
that node further. (3) It is safe: although it does not always
outperform the best baseline for a given sample and reward
function, it is significantly better than random, and typically
comes close to matching the performance of the best baseline.

We initially present this algorithm as a solution to the AEP-
NR problem; in Section IV-B, we describe how to modify it
for the AEP-R problem.

A. ✏-WGX

We introduce ✏-WGX (Weighted Graph eXplore), an algo-
rithm to solve the AEP problem.

✏-WGX requires that the user specify a reward function,
which is used to evaluate the success of a probe (we consider
two reward functions, described in Section V-B). For each
node u, we maintain a reward vector R

u

, which contains a
list of rewards corresponding to the outcomes of the probes
conducted on that node.

Additionally, the algorithm uses a weight function W :
u ! R+ to guide probe selection. This function is described in
Section IV-C, and is based on the reward function: nodes that
have produced high rewards in the past have higher weights.

Finally, the algorithm requires a parameter ✏ between 0 and
1. In each step:

• Exploration: With probability ✏, the algorithm ran-
domly selects a node u from G

samp

in accordance
with the weight function.

• Exploitation: With probability 1 � ✏, the algorithm
selects u uniformly at random from among the set
of nodes with the highest weights.

Once the probe is made, we update the reward vector R
u

and the weight function. If u has no further neighbors to be
learned, we remove it from future consideration.

Fig. 2. Results for ✏-WGX on a BFS sample from the FB-UGrad network
(described in Section V-C). Observe that the performance is not sensitive to
the choice of ✏.

B. Solving the AEP-R Problem

For the AEP-R problem, when we perform a probe, we are
not guaranteed to get a new neighbor of the selected node. We
thus face the additional problem of determining when to stop
probing a node. Suppose that for a node u we have conducted
C

u

probes in total, and have observed A
u

distinct neighbors
and B

u

duplicates.

We devise the Reduce Weight criterion, in which the
probability of probing a node u depends on its reward vector
R

u

, as well as the values of A
u

and B
u

, as follows:

Using A
u

and B
u

, we calculate p
u

, the probability of
observing a new neighbor when probing, using the MLE
method described in Section III.2 Using p

u

, define a new
weight function W 0 : u ! R+, which is defined by W 0(u) =
p
u

W (u). Then instead of selecting nodes according to the
original weight function W , use the modified weight function
W 0.

C. Weight Function

Suppose a node u has been probed at least once. Then
W (u) is defined as the mean of the reward vector R

u

. Suppose
a node v has not yet been probed. Then W (v) is the mean of
all values W (u), for nodes u that have been probed.3

D. Selection of ✏

We considered a variery of ✏ values ranging from 0.1
(rarely explore) to 1.0 (always explore). Results are not very
sensitive to ✏ (see Figure 2 for an example). Setting ✏ = 0.3
seems to work well, and we present those results here.

2The MLE prediction for total degree uses only the values A
u

and B
u

. It
is possible, though unlikely, that between the neighbors learned from probing
as well as the neighbors that originally existed in G

samp

, there are more
known neighbors than predicted neighbors. Because it would be nonsensical
to estimate p

u

as a negative number, we estimate it as a very small number
(here, 0.000001).

3Like with p
u

, we add a small number (here, 0.1) to all values to ensure
that even nodes with a mean observed reward of 0 have some probability of
being probed.



Fig. 3. Degree distribution for Amazon network (described in Section V-C).
There are many nodes with low degree, but not overwhelmingly so.

E. Notes on Use of ✏-WGX

It is important to note that ✏-WGX is based fundamentally
on the principles of exploitation and exploration; i.e., once it
finds a successful node, it should be able to probe that node
multiple times.

Consider the extreme case of a network where nearly every
node has degree 1: when the algorithm randomly selects a
node, it will learn the single edge, but will not be able to
acquire new knowledge through additional probes. ✏-WGX is
most useful in cases where the typical node has a fairly high
degree. See Figure 3 for an example of the degree distribution
of such a network: although it does appear to follow a heavy-
tailed distribution after some minimum x-value, degree-1 nodes
are not an overwhelming majority.

V. EXPERIMENTAL SET-UP

The purpose of our experiments are to demonstrate the
following claim:

The ✏-WGX algorithm consistently performs well. Al-
though it does not always outperform the best baseline probing
strategy for a particular network sample and task, the best
baseline strategy varies across tasks, samples, and even probing
budgets. Thus, the ✏-WGX algorithm is a safe and reliable
choice in cases when a user does not know which specific
baseline probing strategy is appropriate for a given network,
sampling method, task, and probing budget.

A. Experimental Overview

We assess the performance of our ✏-WGX algorithm on
four network datasets (see Section V-C), using samples gener-
ated by the four popular sampling methods (see Section III-C),
and compare against relevant baseline probing strategies (see
Section V-D) using two reward functions (see Section V-B).

For each network G, for each sampling method, we gen-
erate five samples, each containing 10% of the edges from
the original network G. For each sample G

samp

, we calculate

bNR

max

, the maximum possible number of edges that can be
learned (i.e., the number of edges adjacent to at least one node
in G

samp

, which are not already present in G
samp

). For the
AEP-R problem, in which one may obtain duplicate edges with
multiple probes, it is theoretically possible to prove forever.
Thus, we set an upper limit budget cutoff at bR

max

= 3⇥bNR

max

.
We then consider budgets b1, ..., b100 corresponding to the 100
quantiles of the interval (0, bNR

max

or bR
max

), as appropriate. For
example, if bNR

max

= 200, we consider budgets 2, 4, 6, ..., 200.4
(Recall that each unit of budget corresponds to probing one
node and learning one edge.)

For our ✏-WGX algorithm, we set ✏ = 0.3 (as described
in Section IV-D), and the baseline strategies are described in
Section V-D. We visually observe the behavior of the various
strategies across the range of budgets and compare results
at a single budget level; additionally, we use a Wilcoxon
signed-rank test to evaluate whether the differences between
algorithms are statistically significant.

B. Reward Functions

In this work, we consider two reward functions that are
relevant for a variety of applications.

Let u be the node from the original sample graph G
samp

that was probed, and let v be the neighbor of u that is obtained
by probing u.

• The Number of Nodes (NumNodes) reward function
has a value of 1 if node v is outside of G

samp

, and 0
if v is within G

samp

.

• The Triadic Closure reward function has a value of
1 if both u and v are within G

samp

, edge (u, v) is not
in G

samp

, and u and v share at least one neighbor in
G

samp

, and a value of 0 otherwise. In other words, if
u and v are 2-hops apart in G

samp

, then edge (u, v)
closes the triangle.

C. Datasets

We consider the following network datasets:

• FB-Grad This network represents a portion of the
Facebook network corresponding to graduate students
at a university. It contains 523 nodes and 3256
edges [7].

• FB-UGrad This network represents a portion of the
Facebook network corresponding to undergraduate
students at a university. It contains 1220 nodes and
43,208 edges [7].

• FB-SocCir This network represents a portion of the
Facebook network collected by the Social Circles
application. It contains 4039 nodes and 88,234 edges.5

• Amazon This network represents book co-purchases
from Amazon.com. Each node represents a book,
and two nodes are linked if one of the two books
is frequently purchased with the other. It contains
270,347 nodes and 741,124 edges.5

4There is one exception to this: due to the larger size of the Amazon
network, described in Section V-C, we only consider the 100 quantiles of
the interval [0, 0.02⇥ bNR

max

].
5Obtained from snap.stanford.edu.



D. Baseline Probing Strategies

We considered a variety of baseline probing strategies
based on structural information, and consistently saw that two
performed the best: probing high degree nodes and probing low
degree nodes. These two strategies probe nodes in descending
or ascending order of degree until there are no more edges to be
learned for a node. (For the AEP-R problem, we use a stopping
criterion described below). We refer to these strategies as ‘High
Degree’ (HighDeg) and ‘Low Degree’ (LowDeg) probing.

We additionally consider a random probe strategy (’Ran-
dom’), which selects a random node for probing in each step.
A node is eliminated from consideration once all of its edges
have been learned.

Note that for the AEP-R problem, our Reduce Weight
criterion described in Section IV-B cannot be applied to these
baseline strategies. This is because the Reduce Weight criterion
requires that each node be assigned a score, which is then
multiplied by the probability of seeing a new edge when
probed. These strategies rank the nodes, but do not score them.

For these methods, we use a simple rule to decide when
to stop probing: if we have seen duplicate neighbors in more
than half of a node’s probes, we stop probing it.

E. Evaluation

Our evaluation method is specific to the reward function
being used. For a given sample G

samp

, once some number of
b probes have been conducted, we score the enhanced sample
G0

samp

as follows:

• For the NumNodes reward function, we calculate the
total number of nodes in G0

samp

.

• For the Triadic Closure reward function, we calculate
the total number of triangles in G0

samp

between nodes
that were originally in G

samp

.

VI. RESULTS

Recall that the goal of our experiments is to demonstrate
that ✏-WGX is a safe strategy: that is, it is significantly better
than random probing, much better than the worst baseline, and
frequently comparable to the best strategy. It is not reasonable
to expect ✏-WGX to outperform the best baseline, because
the best baseline varies depending on the network, sampling
method, reward function, and probing budget.

To this end, we present results in three parts:

1) We demonstrate that it is difficult to predict which
baseline strategy is the best, as it varies between
networks, sampling strategies, and probing budgets.

2) We discuss results for the AEP-NR problem, in
which one is guaranteed to get a new edge with
every probe. We show that the ✏-WGX algorithm
performs significantly better than random, and often
even outperforms the best baseline strategy.

3) We discuss results for the AEP-R problem, in which
one is not guaranteed a new edge with every probe.
We again show that ✏-WGX performs well.

Fig. 4. Results of various baseline strategies on a BFS sample from the
FB-SocCir network for the NumNodes reward function. Note that the choice
of which baseline strategy is best depends on budget.

TABLE I. THE BEST BASELINE STRATEGY FOR VARIOUS SAMPLING
METHODS AND NETWORKS FOR THE NUMNODES REWARD FUNCTION.
THERE IS LITTLE CONSISTENCY. ‘VARIES’ INDICATES THAT THE BEST

STRATEGY IS BUDGET-DEPENDENT.

Network
SampleType FB-Grad FB-Ugrad FB-SocCir Amazon
BFS LowDeg LowDeg Varies LowDeg
Edge LowDeg LowDeg HighDeg HighDeg
RW Varies Varies Varies HighDeg
RWJ Varies Varies HighDeg HighDeg

A. Analysis of Baseline Strategies

We evaluate the three baseline strategies described in Sec-
tion V-D on each sample over all considered probing budgets.
We see that the best baseline can vary in surprising ways.

For example, see Figure 4, which shows the results of the
baseline strategies over the range of probing budgets on a
BFS sample from the FB-SocCir network, for the NumNodes
reward function. Initially, High Degree probing is best, but
later, Low Degree probing becomes the best.6

Table I lists the best baseline strategy across 5 samples for
each sampling method and network, for the NumNodes reward
function. Results are inconsistent: the best baseline strategy for
one particular sample type and network is unlikely to be the
best for a different sample type or network.

These results motivate ✏-WGX, which adapts to the specific
qualities of the graph sample and reward function.

B. Results for AEP-NR Problem

In the AEP-NR problem, one is guaranteed to get a new
edge with every probe; thus one does not need to think about
when to stop probing a node. We apply our ✏-WGX algorithm
to this problem, with excellent results.

6Both the curves for the High Degree and Low Degree strategies have three
locations with a sharp jump in the number of nodes. This is because there
are three nodes in the sample that are exceptionally good to probe (adjacent
to many nodes outside the sample). These strategies encounter these nodes at
different times.



Fig. 5. Results of various strategies on a BFS sample from the FB-Grad
network for the TriClose reward function. ✏-WGX performs comparably with
the best baseline. (Best viewed in color.)

Fig. 6. Results of various strategies on a RW sample from the FB-SocCir
network for the NumNodes reward function. ✏-WGX outperforms the best
baseline strategy. (Best viewed in color.)

Figure 5, presenting results for the ✏-WGX algorithm on
a BFS sample for the FB-Grad network across the range
of budgets that we considered, is typical of other networks,
sampling methods, and reward functions. Note that ✏-WGX
performs comparably with the High Degree probing strategy,
which is the best baseline strategy (the differences here are not
significant). Both perform much better than Random probing
and Low Degree probing.

Figure 6 shows the same set of results, but on the FB-
SocCir network. Here, ✏-WGX is the best even at low budgets.

We present small versions of plots corresponding to one
sample for each network and sampling type in Figure 7, for the
NumNodes reward function. These plots generally fall into the
same pattern as one of the plots discussed already. Takeaways
for the TriClose reward function are similar, and to save space,
we do not present them here.

To aggregate across multiple samples and networks, we
perform the following: We fix a budget value b

mid

at the
midpoint of the range we consider (i.e., half of the maximum
possible number of edges that can be learned). For each

Fig. 8. Mean performance of ✏-WGX vs baseline strategies, presented as
fraction improvement over random, measuring number of nodes in the sample.
For every sampling method, ✏-WGX is the best probing strategy.

Fig. 9. Mean performance of ✏-WGX vs baseline strategies, presented as
fraction improvement over random, measuring number of triangles in the
sample. For the RWJ sampling method, ✏-WGX is the best strategy. For the
others, it is second best.

sampling method, we perform b
mid

probes according to ✏-
WGX and the three baseline strategies, over all five samples
generated by that sampling method over each of the four
networks. Figures 8 and 9 contain the means of the resulting
scores for each probing strategy. We present these values as a
fraction improvement over Random probing, so the Random
probing strategy has a score of 0 and is not presented. For
example, over all BFS samples from the four networks, ✏-
WGX had a mean 20% improvement over Random probing
with respect to the NumNodes reward function.

It is interesting that the relative performance of the strate-
gies varies with sample type. We discuss this in Section VI-D

To determine whether the differences are statistically sig-
nificant, for each reward function and sampling method com-
bination, we perform a Wilcoxon signed-rank test at the
p = 0.01 level, aggregating all networks and budgets together.
We compare ✏-WGX to each of the three baseline strategies.

The differences shown in Figures 8 and Figures 9 are rep-
resentative of the results over all budgets, and these differences
are statistically significant. ✏-WGX is the best strategy in all
cases, with the following exceptions:

• For the TriClose reward function, High Degree prob-
ing is the best strategy for BFS, RandEdge, and RW
samples. ✏-WGX is second-best.

These results support our goal of demonstrating that the ✏-



Fig. 7. Results of various strategies on a BFS sample from the FB-SocCir network for the NumNodes reward function. ✏-WGX outperforms the best baseline
strategy. See discussion in Section VI-B for significance testing. (Best viewed in color.)

Fig. 10. Results of various strategies on a Random Edge sample from
the Amazon network for the TriClose reward function. ✏-WGX performs
comparably with the best baseline strategy. (Best viewed in color.)

WGX is a safe choice of algorithm. As argued in Section VI-A,
it is hard to know which baseline strategy might be the best
for a given scenario. Although High Degree happened to be
better on average in the exceptions listed above, there are many
times when it performs poorly. For example, see Figure 10,
which depicts results on the Amazon network with a RandEdge
sample, where ✏-WGX does much better.

These results support our main point, that ✏-WGX is a safe
algorithm, ideal for cases when one does not have background
knowledge about which strategy is best for a given network or
task.

Fig. 11. Results of various strategies on a BFS sample from the FB-
SocCir network for the TriClose reward function. ✏-WGX outperforms the
best baseline strategy by a large margin. (Best viewed in color.)

C. Results for AEP-R Problem

For the most part, the takeaway of results for the AEP-R
problem are similar to those on AEP-NR. To save space, we
do not present a full array of plots.

For example, see Figure 11, which depicts results on a BFS
sample from the FB-SocCir network, for the TriClose reward
function. ✏-WGX algorithm is clearly the best.

As before, Figures 12 and 13 present the mean results,
over all samples produced by a given method, at the median
budget. These results are presented as a fraction improvement
over Random probing. Again, ✏-WGX is often the best method,
and is never worse than second-best.



Fig. 12. Mean performance of ✏-WGX vs baseline strategies, presented as
fraction improvement over random, measuring number of nodes in the sample.
For all sampling methods except RWJ, ✏-WGX is the best strategy. For RWJ,
it is second-best.

Fig. 13. Mean performance of ✏-WGX vs baseline strategies, presented
as fraction improvement over random, measuring number of triangles in the
sample. For BFS samples, ✏-WGX is the best strategies. For all others, it is
second-best.

Performing the Wilcoxon signed-rank test across all net-
works and probing budgets, we see that results are very similar
to those presented in Figures 12 and 13. All differences
are statistically significant at p = 0.01 except when noted
otherwise. ✏-WGX is the best strategy in all cases, with the
following exceptions:

• For the NumNodes reward function, on RWJ samples,
Random probing is slightly better than ✏-WGX. How-
ever, this difference is not statistically significant at
p = 0.01.

• For the TriClose reward function, High Degree prob-
ing is the best strategy on RandEdge and RW samples.
✏-WGX is second best. (Figure 13 shows that High
Degree probing is also the best on RWJ samples,
but this figure is for only one budget, while the
significance tests were run across all budgets.)

For the NumNodes reward function, why does Random
probing work so well on the RandEdge and RWJ samples?
This occurs because of the nature of the AEP-R problem.
In contrast to the other three strategies, the Random probing
strategy switches its selection in each step. It is thus more
likely to get a new edge each time: although its choices are
not necessarily smart, they are new.

D. Effect of Sample Type on Performance

The performance of the probing strategies varies by sample
type. In particular, on RandEdge and RWJ samples, Random
probing seems to work almost as well as anything else.

A RandEdge sample contains edges sampled uniformly
at random. Similarly, a RWJ sample contains many small
components. In both cases, most nodes have a high fraction of
neighbors outside the sample, so one need not be so strategic
about probes. In contrast, a BFS sample is highly skewed:
some nodes have many neighbors inside the sample, so node
selection is much more important. If one does not know how
the sample was generated, ✏-WGX is a good choice.

E. Running Time Analysis and Efficient Implementation

✏-WGX is slower than the baseline probing strategies, but
similar to Random probing for larger datasets.7

On the small FB-UGrad dataset, we conducted 10,000
probes using the four strategies. On a BFS sample, the High
and Low Degree strategies took 0.03 seconds, Random probing
took 0.5 seconds, and ✏-WGX took 1.4 seconds.

However, on a BFS sample from the much larger Amazon
network, High Degree probing took 1.4 seconds, Low Degree
probing took 0.2 seconds, Random probing took 31.0 seconds,
and ✏-WGX took 34.3 seconds.

The runtime of ✏-WGX is dominated by the step of se-
lecting a node at random during an exploration step (updating
data structures after a probe are constant time operations).

We expect that in practical applications, the cost of con-
ducting the probes (e.g., running a traceroute) in each step will
far exceed the cost of selecting the probe. Moreover, assuming
that conducting probes has an actual cost, the increase in
performance from ✏-WGX is likely worth the cost of running
a random number generator.

VII. DISCUSSION

The results in the previous section have illustrated our
two main points: First, predicting the best baseline strategy
ahead of time is difficult. Second, given that one does not
know ahead of time which strategy will be best for a specific
network, sample, reward function, and probing budget, ✏-WGX
is a safe strategy that often performs better than or nearly as
well as the best baseline strategy. Although there are cases
when a particular baseline strategy is better on average than ✏-
WGX, even in such cases, ✏-WGX is typically not far behind;
moreover, it is successful even in cases when that baseline fails
to work well (e.g., Figure 10).

VIII. RELATED WORK

The AEP problem is most similar to topics in graph
sampling and crawling; additionally, our ✏-WGX algorithm
draws from the literature on multi-armed bandits.

Graph Crawling and Sampling Much effort has been
expended in the area of effectively crawling or sampling

7All running time experiments were conducted on a MacBook Pro with a
2.3 GHz Intel Core i7 processor and 8GB of RAM.



large networks. Leskovec and Faloutsos provide an excellent
overview of several popular sampling methods [6]. Others have
focused on sampling for specific tasks. For example Maiya
and Berger-Wolf, as well as Wu, et al., have studied sampling
graphs for community detection [8], [9]. Others have used
crawling to estimate characteristics of the larger graphs. For
example, Maiya and Berger-Wolf use crawling to estimate
centrality measures such as PageRank [10], and Cho, et al.
propose a method for determining which URLs to examine in a
web-crawl so as to maximize the number of nodes visited [11].

Unlike these works, we assume that we are given a graph
sample and must then improve it, as opposed to having full
control or even knowledge over how the sample was created.

Network Analysis with Limited Information Another
question is how to infer characteristics of a graph given a
sample. Hanneke and Xing attempt to predict topology given
access to only a few nodes [12], and Kim and Leskovec attempt
to infer missing pieces of a network [13].

Others have studied problems in which one has a lim-
ited budget to gather network information. For example,
Avrachenkov, et al. propose a method for locating high-degree
nodes in a network using a limited number of queries [14],
and O’Brien et al. use local information to estimate the core
number of a node [15]. Cohen, et al. show how one can
efficiently immunize a networked population in which the
network structure is unobserved by targeting neighbors of
randomly selected nodes [16]. In the area of sensor networks,
Shakkotai considers nodes attempting to find the source of
information using only local knowledge [17]. Most similar
to our work is that of Macskassy and Provost, showing how
one can identify malicious actors in a network by gathering
information about those thought to be the most suspicious [18].

Unlike these works, we consider arbitrary reward functions,
rather than specific tasks.

Multi-Armed Bandits A multi-armed bandit method is
at the heart of the✏-WGX algorithm. The multi-armed bandit
problem dates to the mid-20th century, when Robbins studied
the sequential design of experiments [19]. Berry and Fristedt
give an overview of bandit problems in [20]. The simplest
algorithm for solving the problem is the ✏-Greedy approach [1],
which has been shown to work well in practice [21]. Other
methods allow the value of ✏ to decrease as time goes on [21].
Contextual bandit algorithms assign feature vectors to each
arm of the bandit; exploration is then guided by these features,
so arms with features similar to those of arms that have been
successful in the past are more likely to be chosen (e.g., [2]).

A great deal of research has been done on algorithms for
the multi-armed bandit problem, and it is not possible for us
to cover it all here, but [22] is an excellent survey.

IX. CONCLUSIONS

We have presented the Active Edge Probing problem, in
which one must select nodes in an incomplete sample graph for
further exploration, without knowledge of or control over how
the sample was generated. We presented the ✏-WGX algorithm,
a multi-armed bandit-based method that identifies nodes that,
when probed, produce the most useful information about the
complete graph as a whole. Compared against three baseline

probing strategies, across a variety of network and sampling
methods, ✏-WGX is always the best or second-best probing
strategy. Most critically, ✏-WGX is uniformly successful; in
contrast, even though the baseline strategies are occasionally
successful for certain sampling methods or networks, they are
inconsistent.

In future work, we are considering other probing scenarios,
including cases in which one is only allowed to probe certain
nodes.
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